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ANALYTICAL METHOD FOR DETERMINING THE STABILITY
OF LINEAR RETARDED SYSTEMS WITH TWO DELAYS

L. Keith Barker
Langley Research Center

J. L. Whitesides
The George Washington University
Joint Institute for Acoustics and Flight Sciences

SUMMARY

Differential -difference equations occur in various branches of science. The sta-
bility of these equations, however, is much more difficult to determine than that of ordi-
nary differential equations. In this paper the stability of differential-difference equations
of the retarded type with constant coefficients and two constant time delays is considered.
A new method that makes use of analytical expressions to determine stability boundaries,
and hence the stability of the equations, is derived. The basis of the method consists in
deriving analytical equations for each of the delays which correspond to the purely imag-
inary roots of the characteristic quasi-polynomial.

The method developed is used to analyze the stability of a second-order differential
equation with delays in the velocity and displacement terms. The resulting stability re-
gions are in agreement with those obtained by other investigators.

INTRODUCTION

A differential-difference equation of the retarded type is basically a differential
equation in which the highest order derivative of the dependent variable contains no delay
in its argument (time), but any of its other derivatives or the dependent variable itself
may have delays. Such equations arise when the future state of a system depends not
only on its present state but also on part of its past history. (See refs. 1 to 5.)

One of the major obstacles encountered in dealing with systems with delays is the
stability analysis. Moreover, it appears that practical applications of such systems have
been limited thus far to one and two delays. A convenient method is developed in refer-
ence 6 to examine the stability in the delay space for a linear, time invariant differential -
difference equation of the retarded type with one constant delay. This method, which is
somewhat similar to the method of reference 7, is extended in reference 8 to many con-



stant delays. In particular, stability boundaries in the delay space for a retarded system
with two delays can be constructed by using the method of reference 8. However, the
points on the boundaries are found by an indirect procedure which involves searching for
the roots of transcendental equations. (This is not the case for one delay.)

The purpose of the present study is to develop explicit analytical equations for con-
structing stability boundaries in the delay space for retarded systems with two constant
delays. This report is based on work that has been completed as part of L. Keith
Barker's doctoral research program with The George Washington University.

SYMBOLS
AN N X N matrices of real constants
a,b,c real constants
aj1,a1g,agy,agg real constants
B N Xm matrix of real constants
by1,b12,bg1,b29 real constants
C positive scalar function of w (see eq. (43))
I N X N identity matrix
i imaginary unit, /-1
j,k,l,m,n integers
Kj integer associated with 9]-
L(s),L(s,Gj) characteristic quasi-polynomial of retarded system
Lg(s) resulting polynomial when delays are made zero in L(s)
M number of delays in system




N

P(s),Q(s),R(s)

q,r

(o}

<

»y

Y]_,yz

dimension of system

angles defined in figure 1
complex variable, o + iw

root of L(s,9j>

time or independent variable
nondimensional time
m X 1 vector forcing function

integer associated with 9j

scalar function of time

N X1 state vector

defined by equations (14) and (15), respectively
argument of Q(iw) e'iwe1 (see fig. (1))
argument of P(iw) (see fig. (1))

argument of R(iw) e-iw92 (see fig. (1))

small positive numbers

damping parameter

real and constant delays

radius of small circular contour around any root of

polynomials in s with real constant coefficients

L(s.6)



o real part of complex variable s

7,71,72,7; real and constant time delays

w imaginary part of complex variable s

Wm largest positive real root of equation (20)

Mathematical notations:

I absolute values or magnitude

arg argument

det determinant

min minimum value

A small incremental value

Dots over a symbol denote derivatives with respect to time,
ANALYSIS

Retarded Systems

The state equation for a physical system is sometimes written in the form
M
x(t Z 1 X(t - 77) + Bul(t) (1)

where X(t) isan N X 1 state vector, u(t) is an m X 1 input vector, A and 4
are N X N constant matrices, B isan N Xm constant matrix, and 7,20 isa
constant time delay. Equation (1) is a linear differential-difference equation of the re-
tarded type with constant coefficients and delays. For brevity, equation (1) is referred
to as a retarded system. Mathematical treatments of retarded systems can be found in
references 1, 9, and 10, for example.




Equation (1) is said to be stable if and only if the corresponding homogeneous
equation

M
f( ZAlXt—TZ (2)

is stable; that is, if all the roots s = 0 + iw of the characteristic quasi-polynomial

L(s) = det [sI - A - Z Age 8

=1

3

have negative real parts. In this case, the solution to the homogeneous equation (2)
approaches zeroas t — « (ref. 1),

Techniques of generalized harmonic analyses can be applied meaningfully to the
retarded system of equation (1) when equation (2) is stable (ref. 11). The stability of
equation (2) is also inherently related to the asymptotic stability of some nonlinear con-
trol problems (ref. 10). Various methods have been proposed for determining whether
any of the roots have nonnegative real parts (o 2 0); for example, see references 8, 12,
13, and 14.

Class of Retarded Systems

Stability boundaries are examined for the class of retarded systems which has a
characteristic quasi-polynomial of the form:

-6 98

L(s) = P(s) + Q(s) e-e 15 R(s) e (4)

where

N
P(s) = z ajsj (an # 0)
j=0
N-1
Q(s) b]sJ
j=0



N-1
R(s) = Z cjs!
j=0

The real nonnegative constants 61 and 682 will be referred to as delays although
they may be some linear combination of the actual time delays 7; in equation (1). Some
examples of retarded systems with characteristic quasi-polynomials of the form of equa-
tion (4) are given in appendix A.

The stability condition (stable or unstable) of a retarded system with characteristic
quasi-polynomial equation (4) is the same as the same system with zero delays
(01 =09 = 0), if the values of 67 and 69 in equation (4) are sufficiently small. This
initial stability condition is determined by setting 61 = 69 = 0 in equation (4) and then
examining the roots of the resulting polynomial

Lo(s) = P(s) + Q(s) + R(s) (5)

If the degree of the polynomial equation (5) is N and if the delays 63 and 69 are
sufficiently small, then the quasi-polynomial equation (4) has N roots very close to the
N roots of equation (5), and the remaining infinity of roots have very large negative real
parts (refs. 8 and 13). Additional information on the roots of quasi-polynomials is con-
tained in reference 4 and 15,

As the delays are varied in some continuous manner from essentially zero, the
roots of the quasi-polynomial equation (4) move continuously and generate an infinite
number of continuous root-locus curves in the complex root plane; that is, in the cw-
plane, s=o0 +iw satisfies L(s) = 0. (See appendix B.) Clearly, it is impossible to
plot all the root-locus curves of equation (4) for a given continuous variation of the de-
lays. It is possible, however, to determine the number of roots with positive real parts
as the delays are varied by examining the behavior of the root-locus curves on the imag-
inary axis, This approach is used in reference 8.

Partitioning Delay Space Into Stable or Unstable Regions

Root-locus curves are generated by the roots of equation (4) as the delays are
varied. If a root-locus curve comes into contact with, or crosses, the imaginary axis
at o (touch point), then by definition, s = iw satisfies

L(iw) = P(iw) + Q(iw) e_iwe1 + R(iw) e_we2 =0 (6)




Since the root-locus curves are symmetrical about the real axis, only w 20 values are
considered.

Equation (6) can be considered as two equations (real and imaginary parts) in two
unknowns. The two unknowns which are chosen vary with the different methods which
have been used to examine the stability of systems with delays. For example, in refer-
ence 6, 09 =0 and the two unknowns are w and 67; in Neimark's method (ref. 14),
the delays are held fixed, and the two coefficients are chosen as the unknowns with
as a coordinating parameter; in reference 16, the unknowns are a delay and a coefficient
or gain. In the present study, the two unknowns are 67 and 69 with w as a coor-
dinating parameter,

A vector representation of the complex quantities appearing in equation (6) is shown
in figure 1, The two distinct solution sets to equation (6) are shown graphically in fig-
ure 2. From the geometric properties of a triangle, it follows that a solution to equa-
tion (6) exists if and only if the following three relationships simultaneously hold:

|P(iw)| +|Q(iw)| 2 |R(iw)| (7)
|P(iw)| + |R(iw)| 2 |QGiw)] (8)
- |R(iw)| + |Q(iw)| 2 |P(iw)| (9)

These relations express the fact that the sum of the lengths of any two sides of a triangle
must be greater than or equal to the length of the remaining side. An equality sign in
either of equations (7), (8), or (9) corresponds to collinear vectors.

It follows by using figure 1 that the angles r and q in figure 2(a) are given by

r=7-3+a«

r =7 -arg P(iw) + arg Q(iw) - wbq (10)
and

Q=7 -B+Y

q =7 -arg P(iw) + arg R(iw) - why (11)



Now, solving equation (10) for 61 and equation (11) for 609 gives

61 = %I:TT - arg P(iw) + arg Q(iw) - ] (12)
and

69 =L1lr - arg P(iw) R(iw) - q

2 = |7 - arg P(iw) + arg R(iw) - q (13)

The angles r and q are obtained from figure 2(a) by applying the law of cosines as

cosr = =y, (14)
2|P(iw)HQ(iw)|
and
{P(iw)l2 + ]R(iw)]2 - |Q(iw)|2
cos (-q) = . _ = ¥y (15)
2|P(1w)HR(1w)!
Choosing 0 = cos-1 ¥ =7 and using the geometry in figure 2(a) gives
61 = —ldl}r - arg P(iw) + arg Q(iw) - cos-1 y1 + 27TK1] (16)
and
f9 = 216[” - arg P(iw) + arg R(iw) + cos-1 Vo + 27TK2} oY)

where K; and Ky are integers.

Using the geometry in figure 2(b) gives

1

01 = 6I:Tr - arg P(iw) + arg Q(iw) + cos-1 v+ ZWVI] (18)

and




1

Bg = 5[71 - arg P(iw) + arg R(iw) - cos-1 Vo + 21TV2:| (19)

where Vi and Vg are integers. A solution to equation (6) exists if and only if 81
and 609 satisfy the pair of equations (16) and (17) or the pair of equations (18) and (19).

Combination values of 61 and 69 for which a root-locus curve touches the
imaginary axis can be determined by plotting 61 and 09 against w., Alternately, 09
can be ploited directly against 61 for corresponding values of w. This latter type of
figure is actually a partitioning of the delay space into regions of stability (stable or un-
stable). It should be noted that Neimark's D-partition methods (ref. 14) can be used to
construct regions of stability in the plane of two real parameters (gains or coefficients)
which occur linearly in the characteristic quasi-polynomial for fixed delays. Other
methods, developed within the last decade, are discussed briefly in reference 17,

The stability region for the smallest values of delays may be all that is required
to show that the delays are not large enough to make the system unstable or to indicate
how much the delays can be increased before the system becomes unstable.

Special Values of w
There are certain values of w which are useful in evaluating the equations for
61 and 069,

Upper bound on w.- An upper bound on w can be computed by using equation (6).
The dominant power on w occurs, by definition, in P(iw); hence, let w = wy, be the
largest positive real root of the equation

N-1
’aleN - ZO (|an| + |bn| + ]anwn =0 (20)
n=

Then, it follows that w = wy, in equation (6) and in the pertinent pair of equations for
61 and 09.

Border values of w,- Partitioning curves are defined only for those values of w

which satisfy equations (7) to (9). These meaningful values of w are determined by
using border values of w. A border value of w is defined as a nonnegative real value
of w which satisfies any of the equality relations in equations (7) to (9), which are:

IP(iw)| +|Q(iw)| = |R(iw)| (21)



IP(iw)| + |RGw)| = IQ(w)] (22)
IR(iw)] + |Qlw)| = |P(iw)] (23)

These equality relationships also follow by setting cos r=+1 or cos (-q) =+1 in equa-
tion (14) or (15), respectively.

The finite number of border values separates the w space into different intervals,
To determine if a partitioning curve is defined for values of w in an interval, evaluate
cosr or cos (-q) at some value of w within the interval. If, for example, [cosr| =1,
then partitioning curves exist for all values of w in the interval. On the other hand, if
|cos r| > 1, the partitioning curves do not exist for any value of w in the interval. The

maximum border value will be equal to wyy,.

Multiple Touch Points

Multiple touch points occur when more than one root-locus curve touches the
imaginary axis for the same values of w, 61, and 689. In this case, the points on the
partitioning curves correspond to purely imaginary roots of the characteristic quasi-
polynomial which have multiplicities greater than unity. Because of its intuitive appeal,
a procedure used in reference 8 is adapted later to examine the stability condition of
regions established by the partitioning curves. This procedure, however, is presented
in reference 8 and in this paper on the assumption that the touch point, where the proce-
dure is applied, is simple. This condition is easily checked by using the partitioning
equations.

By construction, s =iw is a root of the characteristic quasi-polynomial for any
point (6 1,02) in the delay space which lies on a partitioning curve. The questions is: Is
s = iw a simple or multiple root?

Differentiating equation (4) with respect to s gives

dL _dP , (dQ o o) o018, (AR o p) o028 24
ds ds+<ds 1Q)e +ds 2% € (24)

The value of dL/ds at a point (§1,62) on a partitioning curve is given by equation (24)
with s=iw and with 61 and 02 computed by using the partitioning equations, If
dL/ds # 0 at this point, then s =iw is a simple root; otherwise, it is not.

Stable and Unstable Regions in Delay Space

The delay space is partitioned into regions which are either stable or unstable by
the 69 versus 61. The stability of each of these regions can be determined by com-
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puting the initial stability of the system using equation (5) and evaluating the derivative,
on a partitioning curve, of the real part of s =0 + iw with respect to one of the delays
while holding the other delay constant.

Select one of the delays 61 or 609 to be held fixed. For discussion purposes,
denote this delay by 6; (I =1 or 2) and the remaining delay by 6 (k#1; k=1 or 2),

It is assumed that the purely imaginary root is simple (dL/ds # 0) at a point on the
partitioning curves., Moreover, suppose that at this point ano/aé)kn =0 for
n=0,1,. .. g -1; but that ago/aekgae 0. Then, if ago/’aekg >0 and g is an odd
integer, the sytem gains a root with positive real part when the point (Gk,ez) is varied
from a partitioning curve in the direction of increasing 0. Likewise, if ago/aekg <0
and g is an odd integer, the system loses a root with positive real part. If
ago/aekg +# 0 and g is an even integer, then the root-locus curves are tangent to the
imaginary axis, so that the system neither gains nor loses any roots with positive real
parts.

For convenience the characteristic quasi-polynomial is written as

L = L(s,0,0k) (25)

The characteristic equation is then
L =L(s,0;,0k) = 0 (26)

Applying implicit differentiation to equation (26) and extracting the real part of 9s/80

gives
Ly
90 - _R[_k 27

where the partial derivatives Lgj = 9L/80k and Lg = 38L/9s are obtained by using
equation (25) and R denotes the real part of the complex number in parentheses.

The derivative in equation (27) is evaluated on a partitioning curve by setting
s = iw in equation (27) and using the partitioning equations to obtain 6; and 6y. This
derivative then gives the change in the real part of the characteristic root when leaving a
partitioning curve at (el,ek) in the direction of increasing 6.

If 80/80k = 0, then a similar procedure is followed for higher derivatives until
280/06,8 + 0,

11



Summary of Stability Procedure

The procedure used to partition the delay space into different regions and to iden-
tify the different regions as stable or unstable is summarized in the following steps:

(1) Compute the initial stability of the system by using equation (5).
(2) Compute meaningful values of w by using equations (21) to (23).

(3) Plot partitioning curves in the delay space by using 61 and 69 equations as
w varies over the predetermined range of acceptable values in step 2.

(4) If the delays do not cross a partitioning curve (in the plot of step 3) as they are
varied in combination from zero to their final desired values, then the retarded system
with characteristic quasi-polynomial of the form of equation (4) maintains its initial sta-
bility. However, if the delays cannot be varied to their final values without crossing a
partitioning curve, compute the multiplicity of the touch points and the derivative of the
real part of s =0+ iw as the curve is crossed. Use equations (24) and (27).

The stability on each side of a partitioning curve is determined by counting the
number of roots with positive real parts as the curves are crossed. Stability boundaries
are those curves which partition the delay space into stable and unstable regions.

EXAMPLE

To clarify the stability analysis presented in the previous section, the following
example is examined:

ﬁx(f)+2§§—fx(t~-91)+x(f-92)=0 (28)

gt 2

where (>0 is a real constant damping parameter, and the delays 61 and 09 are
nondimensional. This example is examined in reference 8 in a different manner,

The characteristic quasi-polynomial for equation (28) is

L(s) = P(s) + Q(s) e-le + R(s) e_e2S (29)

where

P(s) = s2 Q(s) = 2Cs R(s)=1

12




The initial stability of the retarded system is found by using equation (5), which is

Lo(s) = s2 + 2ts + 1 (30)

Since ¢ > 0, the roots of Lg(s) have negative real parts, so that the retarded system

is initially stable.

Setting s =iw in equation (29) gives

P(iw) = -w?2
Qiw) = 2twi
R(iw) =1

The first pair of equations for the delays 671 and 69 (egs. (16) and (17)) becomes

4 2.2
91=%1-cos‘1 W + 470" -1 + 21Kq (31)
2 T
and
4 2 .2
By =2lcos~1 (L= A7+ 1) | ok, (32)
2w
The second pair of equations for 61 and 69 (egs. (18) and (19)) becomes
4 2,2 _
91=%1+cos'1 Wl AT 1\ +2mVy (33)
2 48w3 /
and
4 2.2
By =1 -cos!(Z ol SR P VN (34)
© 2w2

13



An Upper Bound and Border Values of w

An upper bound wp.- The upper bound of w is obtained by using equation (20),
which becomes

w2 - 2w -1=0 (35)

The largest real nonnegative value of ® which satisfies equation (35) is denoted by wp,.
In this case,

wm=C+\/C2+1 (36)

Border values of w.- The border values of w are obtained by using the relations
in equations (21), (22), and (23), which become

w2 4 2Aw-1=0 (37)
w2 _2%w+1=0 (38)
w2 _2%w-1=0 (39)

Notice that equation (39) is the same as equation (35), so that wp, is a border value.
Other border values are obtained from the solutions of equations (37) and (38) which are,
respectively,

= cxyfe2 i1 (40)
tx\e? o1 (41)

Only the positive radical in equation (40) is of interest since w = 0. Equation (41) is
only of interest when ¢ = 1.

€
|

€
I

Specific Calculations

The border values and upper bound of « are shown in table I for damping param-
eter values ¢ of 0.2, 0.5, and 1.

14




TABLE I.- BORDER VALUES AND UPPER BOUND OF w

Damping parameter, ¢ Border values of w Upper bound, wpm
0.2 0.82 1.22
1.22
5 .62 1.62
1.62
1.0 41 2.41
1.00
2,41

Figures 3 and 4 show the pairs of the delays 61 and 69 which result in a root-
locus curve coming into contact with, or crossing, the imaginary axis in the complex root
plane at w (touch point) for various values of (K;,Kg) and (V1,Vg), respectively. Re-
sults are presented for ¢ = 0.2, 0.5, and 1.

The consecutive Kj curves in figure 3 and the consecutive V]- curves in fig-
ure 4 both differ by 27/w, as shown by equations (31) to (34). Thus, the Vg9 =0 curve
falls off the scale in figure 4.

The terminal points of the curves in figures 3 and 4 correspond to a zero delay or
to a border value in table I. All border values, however, do not necessarily specify a
terminal point on the curves. The value w =1 is a border value that occurs along the
curves in figures 3(c) and 4(c) and is identified by a singularity in the slope of the curves
at this value.

Figures 3 and 4 can be used to obtain the touch points « which occur as the delays
are varied in some continuous manner from zero to their final constant values. The
touch points clearly depend on the manner in which the delays are varied.

A partitioning of the delay space results when 69 is plotted directly against 03
with w as a coordinating parameter, as shown in figure 5. The solid curves correspond
to various values of (KI,KZ) and are generated by using the pair of equations (31) and (32).
The dashed curves correspond to various values of (V1,Vz) and are generated by using the
pair of equations (33) and (34). The totality of curves for (K;,Kg) and (Vy,Vg) partition
the delay space into regions. The arrows on the curves denote the direction of increas-
ing w,.

Since the system is initially stable, it will remain stable until the curve
(Kl,Kz) = (0,0) in figure 5 is touched. To examine the stability beyond this point re-
quires the determination of the multiplicities of the touch points and the changes in the

15



real parts of the root-locus curves as they pass beyond the touch point. All the regions
shown in figure 5 can be entered by crossing one of the solid curves corresponding to
(K1,K3); hence, only these curves need to be examined further.

It can be shown by setting s = iw in equation (24) and using equations (29), (31),
and (32) that dL/ds # O on any of the (K1,Kg) solid curves of figure 5. Hence, the mul-
tiplicity of all touch points is unity.

The change in the stability at a touch point is examined by using equation (27) with
0k =61 and 6; = 9. Reference 8 expresses equation (27) for this particular application
in a very simple form which is equivalent to

cz.seil=w4+w3ez sin w 0 - 1 (42)
where
s 12
c2-_1 oL(iw) (43)
4(.04 961

The scaled derivative C2(80/89 1) has the same signas 060/891. The scaled derivative
on the (K1,K9) curves in figure 5 is evaluated by using equation (32) to obtain 6g9. Since
61 does not appear in equation (42), the scaled derivative is the same for all curves
(K1,K2) which have the same Kg value. The scaled derivative is plotted in figure 6 as
a function of 69 for three values of K9, which are 0, 1, and 2. The arrows on the
curves indicate the direction of increasing w. The Kg =0 curve in figure 6 applies to
the (0,0), (1,0), (2,0), and (3,0) curves in figure 5; the Kg =1 curve applies to the (0,1),
(1,1), and (2,1) curves; and the Ko =2 curve applies to the (0,2), (1,2), and (2,2) curves,

Figure 6 is used to determine the stability condition on each side of the partitioning
curves in figure 5. The arrows on the curves denote increasing values of w and are
used for corresponding values of the scaled derivative with points on the partitioning
curves. For instance, suppose 69 = 0.2 onthe (K;,K3)=(0,0) curve infigure 5, then
the corresponding value of scaled derivative in figure 6 is 0.98. This correspondence is
established by noting that 69 decreases from 609 = 0.2 with increasing w. Now,
since C2(30/06 1) >0 on (K1,K2)=(0,0) when 0g = 0.2, it follows that proceeding off
the (Kp,K9) = (0,0) curve in figure 5, with 69 = 0.2, in the direction of 61, results in
the gain of a root with positive real part. The system, therefore, becomes unstable.

Next, consider the curve (Kj3,K9)=(1,0) in figure 5. It can be shown by using
figure 6 that entering the lower triangular region from the left results in the loss of a
root with positive real part, so that the system becomes stable again. Upon leaving the

16




triangular region on the right, however, a root with positive real part is gained, and the
system becomes unstable.

Entering the upper looped portion of the curve (Kj,Kg)=(1,0) from the left
results in the gain of a root with positive real part. So, inside the upper looped region,
the system has two roots with positive real parts. Leaving the upper looped portion of
the curve on the right results in the loss of a root with positive real part; however, the
system had two roots with positive real parts inside the looped portion of the curve, and
is, therefore, still unstable.

This type of reasoning is repeated for the other regions of figure 5. It is found
that there are only two stable regions in figure 5. These are the initial stability
region bounded by the curve (Kl,K2> = (0,0) and the lower triahgular region of the
(Kl,Kg) =(1,0) curve.

Figure 7 shows the stability boundaries for the retarded system represented by
equation (28) when ¢ = 0.2, 0.5, and 1. The hatched lines indicate the stable side of the
boundaries. These results are in agreement with those of reference 8.

It is well known that the solution of equation (28) becomes more highly damped as
{ increasesif 61=609=0. If 67=# 0, this may not be the case, as shown in figure 7.
For example, let 69 =0 and 64 =0.8. Then, the solution of equation (28) is stable for
¢ = 0.2 and unstable for { =1,

CONCLUDING REMARKS

A new method is developed for generating stability boundaries for differential -
difference equations of the retarded type with constant coefficients and two constant de-
lays. The basis of the method consists in deriving analytical equations for each of the
delays which correspond to the purely imaginary roots of the characteristic quasi-
polynomial. These analytical equations are then used to partition the delay space into
regions which are stable or unstable,

Each point on a partitioning curve corresponds to a root-locus curve touching or
crossing the imaginary axis in the complex root plane, The stability of the different re-
gions, therefore, is examined by computing the initial stability of the equations (zero
delays) and counting the number of root-locus curves with positive real parts as the dif-
ferent regions are entered. The analytical equations mentioned previously are used in
counting the number of root-locus curves with positive real parts. Specifically, the ana-
Iytical equations are used in computing the multiplicities of the root-locus curves and the
partial derivative of the real part of the root-locus curves with respect to one of the
delays.
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The method developed is used to analyze the stability of a second-order differential ‘
equation with delays in the velocity and displacement terms. The resulting stability
regions are in agreement with those obtained by other investigators.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va. 23665

September 12, 1975
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APPENDIX A
EXAMPLES OF RETARDED SYSTEMS WITH TWO DELAYS

The following examples show retarded systems which have characteristic quasi-
polynomial equations of the form of equation (4):

Example 1: Consider the following scalar differential equation with two constant real
time delays 7720 and 792 0:

N N-1 N-1
z an xMt) + Z by x(n)(t -T1) + Z Cn x(n)(t - Tg) = f(t) (A1)
n=0 n=0 n=0

where x(n)(t) denotes the nth derivative of x(t) and f(t) is a continuous input func-
tion of time. The coefficients ap, by, and c¢p are real constants. Equation (A1) can
be written in the form of equation (1); however, this is unnecessary in obtaining the
characteristic quasi-polynomial. The characteristic quasi-polynomial associated with
equation (A1) is equation (4) with

N
P(s) = Z a,s?

n=0
N-1
Q(s) = Z bps?
n=0
N-1
R(s) = Z cpst
=0
61=11
92 = 7'2

19



APPENDIX A

Example 2: Let the retarded system be described by two coupled linear equations with
one distinct delay as follows:

kl(t) a1y aig Xl(t) bll big xl(t -7 fl(t)

kz(t) agq a9y Xz(t) bgq bgog X2(t -7 fz(t)

The characteristic quasi-polynomial associated with equation (A2) is given again by
equation (4) with

P(s) = s2 - (a11 + agg)s + ajagy - agjajy
Q(s) = -(b11 + bag)s + a11bgg + aggb11 - ag1b12 - 212b21

R(s) = b11b22 - baib12

81=1
09 =27

' Note that although there is only one time delay 7 in equation (A2), there are two delays
61 and 69 in the associated characteristic quasi-polynomial.

An equation such as equation (A2) occurs in examining airplane stability for the
controls -fixed case of reference 5 which is modeled in reference 11. Here, 7 accounts
for the fact that a vertical gust affects the horizontal tail later than it does the wing. It
can be shown also that the characteristic quasi-polynomial for the controls-free case of
reference 5 has the form of equation (4) with 61 =7 and 69 =27,

Example 3: A characteristic quasi-polynomial which occurs in epidemics (ref, 18) is
given by equation (4) with

P(S)=T2(S+a) 91=T1
Q(s) = -1 99 =T1+ 73
R(s) =1
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APPENDIX B

ROOTS OF QUASI-POLYNOMIAL AS CONTINUOUS FUNCTIONS OF DELAYS

Theorem: The roots of the quasi-polynomial L(s,Gj), where j=1,2,. .., N,are

continuous functions of Gj.

Proof: The quasi-polynomial L(s,ej) is an analytic function, so that its roots are iso-

lated. Let s* be any one of the roots of L(s,ej) and let p be a positive number
such that the only root of L(s,0;) contained inside-gl}csa contour |s - s*|=p is s* A
Taylor series expansion of the exponential term e J° can be used to show that for
every €> 0, there exists a 0(¢) > 0 such that

’L(S,Gj) - L(s,0 + Aej)| <e
for |s - s*| =p whenever Afj < 6(¢). Choose €< minlL(s,Gj)l on |s - s*[ =p then
|L(s,9j) - L(s,05 + A9j)| <e< IL(S,QJ')'
for Af; sufficiently small and |s - s*| = p. By Rouche's theorem (ref. 19), L(s,;)
and L(s,ej + Afj) have the same number of roots inside the circle |s - s*| = p. Since

p can be made arbitrarily small, it follows that the roots of L(s,ej) must move con-
tinuously with ;.
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